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Whether estimating the size of a crowd or rating a restaurant on a five-star scale, humans frequently
navigate between subjective sensory experiences and shared formal systems. Here we ask how people
manage this in the case of estimating number. We present participants with arrays of dots and ask them
to report how many dots there are. Our results produce two novel findings. First, people’s estimates are
best fit by a bilinear function in log space, rather than the traditional power law described in previous lit-
erature. Second, we find that people’s estimates do not have a stable coefficient of variation at higher
magnitudes, and that the likely cause of this is a “drift” in people’s estimate calibration over many trials
which has not previously been identified. Building on these results, we present a model of the mapping
function from subjective numerosity to symbolic number that relies primarily on a constrained set of
previous estimates and familiar numerosities, rather than the robust internal scale used in existing mod-
els. Our model is able to generate an accurate mapping with limited data and reproduce notable aspects
of estimation seen in our experimental results. This suggests that human number estimation, and perhaps
other domains in which we must navigate between subjective representations and formal systems, is
governed by a relatively simple decision process that primarily seeks to maintain consistency with previ-
ous estimates.
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Human reasoning and planning frequently involves mapping
between internal states and formal systems: We can compare the
weights of two rocks using just our subjective sense of weight, but
to provide an estimate of one rock’s weight in kilograms requires
translating that subjective sense onto a formal metric scale. This
task of expressing perceptual states in objective, standard systems
is commonplace, from making time estimates to evaluating prices,
yet it requires the unique ability to describe our internal represen-
tations of the world using abstract systems like number and value.
What information do we use to accomplish this, and are such map-
pings stable? More broadly, how do humans map from subjective
internal states to formal systems? In this article, we approach this
question using people’s ability to estimate number.
Based on a quick glance at a display of many objects, humans

can estimate the number of objects present using basic visual cues

even when there is insufficient time to explicitly count them.
Imagine, for example, the task of guessing how many people are
in a large room. As you look around, you can get a rough sense of
the number of people present based on the density of the crowd
and the size of the room, and can do so faster than you could count
each person individually. Past work suggests that it takes around
300 ms per item to count individual items while estimation hap-
pens much faster (Simon & Vaishnavi, 1996). To estimate the size
of a crowd requires that we convert the visual signals we receive
from the world to an internal representation of magnitude, which
can then be translated to a rough numerical estimate. How do
humans accomplish this mapping from visual information to an
estimated quantity based on limited signals from the environment?

A large body of research has examined the representations that
support our internal sense of number and that form the basis of nu-
merical reasoning tasks like estimation (for a recent review see
Leibovich, et al. (2017)). The predominant view in this literature
is that people have an internal “Approximate” or “Analog” Num-
ber System (ANS) that allows for rough discrimination of numeri-
cal quantities across sensory modalities (Brannon, 2006; Brannon
& Terrace, 1998; Dehaene, 1997; Gallistel, 1990; Starkey et al.,
1990). This system has been documented in a variety of animal
species (Feigenson et al., 2004) and emerges in humans early in
infancy (Xu & Spelke, 2000), though the role that it ultimately
plays in the development of numerical reasoning remains contro-
versial (Carey & Barner, 2019; Nieder, 2020). A distinct but
related view is that, rather than being inferred from perceptual
stimuli, number is available as a primary feature of perception.
Compatible with this, numerical estimates are subject to visual
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adaptation effects, much like other visual properties such as color
and motion (Burr & Ross, 2008). However, competing accounts
emphasize that perceptual features of a quantity, such as size, area,
and density, are highly correlated with number and that people
struggle to infer number independent of these cues (Leibovich et
al., 2017). This has led some to argue that our ability to estimate
number stems from a more abstract “Generalized Magnitude Sys-
tem” without any internal number representation, or that insofar as
we have an internal representation of number, it is assembled from
our underlying sense of continuous magnitudes (Gebuis & Rey-
nvoet, 2012; Leibovich et al., 2017; Lourenco & Longo, 2011;
Walsh, 2003). Such a system, and the related question of whether
humans and other animals selectively represent number via a sys-
tem like the ANS, remains an area of active research (Clarke &
Beck, 2021; Van Opstal & Verguts, 2013; Yates et al., 2012).
The present work is agnostic regarding the format of our internal

representations of number. Whether humans have an internal sense
that is number specific (e.g., the ANS) or assemble their sense of
number from continuous magnitudes that simply correlate with num-
ber, the task of estimation requires mapping such inputs to formal
representations such as number words and written numerals. In this
way, it belongs to a broader class of problem, namely that of navigat-
ing between subjective, internal representations and quantitative
external systems (Stevens, 1956). Influential work in psychophysics
has shown that the mapping process from representations to external
systems can be formally separated from the earlier mapping from
stimulus to representation (N. H. Anderson, 1974; Attneave, 1962;
Birnbaum, 1974; Shepard, 1981; Treisman, 1964); for a review, see
Gescheider (1988). In this vein, we consider it separately from ques-
tions about the underlying representational character of number infor-
mation. Further, results using a range of psychophysical tasks such as
estimating tone loudness and line length suggest that the mapping
functions from various internal representations to external scales or
categories are often agnostic across sensory domains (Collins &
Gescheider, 1989; Zwislocki, 1983); we expect results in this litera-
ture to inform questions about number estimation.
Critically, prior psychophysical investigations into how people

map from internal representations to external systems have largely
emphasized the limitations of this process (Miller, 1956; Shiffrin
& Nosofsky, 1994). For example, in absolute judgment tasks, peo-
ple are shown stimuli that vary along a single psychological
dimension (e.g., tone loudness) and asked to provide the correct
ordinal labels for the stimuli (e.g., 1–11) over many repeated pre-
sentations. In these tasks, people are typically only accurate for a
few categories (exhibiting constrained information transmission
from stimulus to response: Baird et al., 1970, and McGill, 1954),
even when they can easily differentiate members of the category.
Further, their responses show characteristic dependencies on the
previous stimulus (Garner, 1953; Holland & Lockhead, 1968) so
that in some cases, a participant’s response in a given trial is well
predicted by the stimulus and response in the previous trial (Mori,
1989). Researchers have offered a number of accounts for these
effects, but the dependency on previous trials is difficult to explain
in models that specify a fixed internal scale (Stewart et al., 2005).
In contrast, Laming (1984) demonstrated that people’s behavior in
absolute judgment tasks can largely be explained by a model that
has a highly limited internal scale and instead relies exclusively on
a coarse relationship between current and previous stimuli to

calibrate responses; despite the constraints on this model, subse-
quent work has shown support for such “comparison-based” or
“relative” accounts of the mapping from internal scales to external
judgments (Stewart & Brown, 2004; Stewart et al., 2002, 2005).

In contrast to categories of auditory tones or line lengths, peo-
ple’s estimates of number do not show the same limitations in the
mapping from internal representation to external values. Extensive
prior experience with number categories allows people to map in-
ternal representations to a large (theoretically infinite) range of cor-
rect responses. In line with this difference, existing models of
estimation have largely assumed a robust internal scale that forms
the basis of the mapping from subjective representations to external
values (Izard & Dehaene, 2008). This assumption builds on earlier
psychophysical results as well; for example, Laming (1984) notes
that the “relative” model of absolute judgment tasks above may not
extend to domains such as color where people amass rich prior
knowledge. Further, in magnitude estimation tasks, in which partic-
ipants identify line lengths or tone loudness as described above, but
are allowed to assign arbitrary numbers to each stimulus rather than
identify its ordinal category (e.g., “tell me a number that seems as
big as the line seems long”; Collins & Gescheider, 1989), responses
often reflect an accurate ordinal ranking of the stimuli (Collins &
Gescheider, 1989; Zwislocki, 1983). These findings have been
interpreted as suggesting that number is mapped to a stable underly-
ing scale that is recruited for other psychometric judgments (Baird
et al., 1970; Collins & Gescheider, 1989).

In line with the idea that number estimation relies on a relatively
stable internal scale, research on human numerical estimation has
demonstrated several robust features of people’s mapping from
subjective magnitude representations to symbolic number. First,
when estimating quantities outside the subitizing range, people
tend to underestimate (Kaufman et al., 1949). This relationship
follows a power law (Indow & Ida, 1977), where the magnitude of
people’s errors is roughly proportional to the quantity being esti-
mated. This error pattern is thought to produce a stable coefficient
of variation (CoV) in estimates (Gallistel, 1990; Shepard et al.,
1975; though see also Testolin and McClelland (2021)). Second,
the accuracy of people’s estimates (i.e., the amount they underesti-
mate, or in some cases overestimate) varies considerably across
individuals (Krueger, 1982). Together, these findings suggest that
people’s mapping from internal quantity representations to formal
numbers is often systematically miscalibrated within individuals
and exhibits reliable variability from person to person.

Perhaps the most comprehensive attempt to characterize the
“interface between the system of verbal numerals and the nonver-
bal analog representations of numerosity” is presented by Izard
and Dehaene (2008). They found that giving participants a refer-
ence array and telling them it had a magnitude that was either
equal to, above, or below the true number calibrated all subsequent
estimates, suggesting that the mapping from numerical representa-
tions to formal estimates is flexible and “globally” responsive to
new information. Building on these results, they proposed a model
of the mapping whereby people deploy a “response grid” overlaid
on the mental number line, which is itself a Gaussian distribution
of activation around the perceived magnitude. On this model, acti-
vations for a given stimulus produce corresponding activation of
segments of the response grid, which is then used to provide a
verbal estimate. Individual differences in estimation and calibra-
tion of participants via reference arrays amount to a “stretching or
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compression” of the response grid (Izard & Dehaene, 2008). This
internal scale has an intuitive notion of numerical distance built in,
allowing for rich numerical inference based on a given stimulus.
Indeed, the model described in Izard and Dehaene (2008) predicts
the robust empirical features of number estimation described pre-
viously and replicated in their own results: (a) that participants
have power law underestimation behavior over the range of esti-
mates, (b) that the degree of underestimation can be fit to individu-
als based on idiosyncratic stretching or compression of their
response grids, and (c) that estimates display scalar variability
over increasing magnitudes, that is, the degree of variability in
estimates increases in proportion to the magnitude of the stimulus
being estimated (we use scalar variability and constant CoV inter-
changeably in what follows).
Subsequent work aimed at uncovering the mechanisms of the

“interface” described by Izard and Dehaene (2008) has largely
focused on the role that associative learning and structural analogy
each play in supporting the mapping from magnitude to number.
Under an “associative mapping” account, the process of mapping ap-
proximate magnitude representations to verbal number is one of
learning to align a given number word to its corresponding magni-
tude representation (Lipton & Spelke, 2005; Nieder, 2020). However,
proponents of a “structure mapping” view have noted that structural
similarity between monotonic internal magnitude representations and
the ordinal structure of the number line might allow for a mapping of
magnitude to symbolic number that instead draws on notions of
equivalent ordering and distance across the two systems without
needing to map every number to a corresponding magnitude (Carey,
2009). Evidence from studies of estimation in young children sup-
ports the use of an associative mapping for small numbers (Le Corre
& Carey, 2007), while the recalibration results in Izard and Dehaene
(2008) and similar work by others (Lyons et al., 2012) call into ques-
tion the notion of a strong association between number and quantity
for larger magnitudes. Indeed Sullivan and Barner (2013) suggest
that humans use both structure and associative mappings to support
estimation, though critically, they find little evidence that children or
adults have associative mappings beyond magnitudes of about 12;
further, they find that developmental improvements in estimation are
better explained by improvements in structural analogy than
improvements in accuracy or scope of associative mappings.
The results from Sullivan and Barner (2013) suggest that humans

associate numbers with quantities in the world through some combi-
nation of associative and structure mappings (for a recent review, see
Carey and Barner, 2019), and that models like Izard and Dehaene
(2008), which posit only a single mapping function, may not be
adequate. Nevertheless, the “response grid” model in Izard and
Dehaene (2008) provides one of the only formal accounts of how
large number estimates are affected by calibration. It offers the best
existing model of how structure mapping—and most estimates—
might work. The model also makes several concrete predictions
about the form and stability of people’s estimate functions that have
not been robustly tested in previous studies, and which are important
to understanding the mechanisms that support estimation. In particu-
lar, it predicts that estimates should obey a power law for large mag-
nitudes, and that estimates should exhibit scalar variability or a
constant CoV. As we describe below, data regarding these predic-
tions suggest an alternative model of estimation that not only
explains calibration effects, compatible with structure mapping, but
can also accommodate effects attributable to associative mapping.

In the present study, we tested the power law estimate function
and stable CoV predicted by Izard and Dehaene (2008) to better
characterize the relationship between associative and structure map-
pings over a large magnitude range. Our results contain two key
findings. First, we show that individual estimates are better fit by a
log-bilinear function rather than a power law, which may in turn
capture the relationship between precise associative mappings of
lower magnitudes and more flexible structure mappings for larger
numbers. Second, we find that people display dynamic variability in
their mapping from magnitude representations to verbal estimates
over many trials. This produces an increasing coefficient of varia-
tion at higher magnitudes. We hypothesize that this latter mapping
variability stems from an ongoing attempt to maintain calibration
consistency with previous estimates. We argue that these findings
are not easily incorporated into the “response grid” model of Izard
and Dehaene (2008) and present an alternative model that produces
numerical estimates based not on a stable internal calibration but on
samples from prior trials and familiar magnitudes. This model is
consistent with a large body of psychophysics work indicating that
people’s judgments of magnitude and categorizations of continuous
stimuli are heavily influenced by the context of previous trials and
show little evidence of having a stable internal scale (Laming,
1984; Stewart et al., 2006, 2002, 2005). Despite the challenge of
not having a reliable underlying scale, the model is able to repro-
duce key characteristics of human number estimation consistent
with our experimental results. Altogether, our findings suggest that
human number estimation, and other domains in which we must
navigate between subjective representations and formal systems, is
governed by a relatively simple decision process that seeks to main-
tain consistency with previous judgments and prior experience with
the relevant system. In this way, our results suggest that the process
of mapping from internal representations to external systems may
rely on computationally limited, domain-general processes even in
settings where we have a great deal of calibrated experience.

Experiment

In this experiment, participants estimated number in dot arrays
over many repeated trials that captured a large magnitude range;
we investigate the form and stability of people’s estimate calibra-
tions across trials.

Method

Participants

Participants were 24 undergraduate psychology students at the Uni-
versity of California, San Diego who received course credit for their
participation. Informed consent was obtained from all participants in
accordance with the Institutional Review Board’s approved protocol.

Procedure

In each trial, participants were shown a series of dot arrays on a
white background like those in Figure 1. The array of dots was pre-
sented for 250 ms, and then subjects were prompted to type in their
guess as to how many dots were in the array. Subjects were then
asked to type in a second guess about the number of dots in the array.
Our experimental results use the first of the two guesses. Participants
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performed 300 estimation trials over the course of the experiment
and did not receive feedback on their estimates at any point.1

Stimuli

The number of dots shown on each trial was sampled from a geo-
metric distribution with a mean of 50, truncated at the low end so
that displays had at least two dots. All the dots in an array were the

same size (radius of 10 pixels), presented in red on a white back-
ground. The configuration of dots was randomly generated by draw-
ing locations from a uniform distribution over the full display area

Figure 1
Experiment Stimulus and Sample Responses

Note. (Top) Participants saw 300 trials in which an array of dots was briefly presented
and participants made a guess as to the number of dots shown. (Bottom) A representative
subject’s data over all 300 trials with number presented on the x-axis and number reported
on the y-axis (both log scale). See the online article for the color version of this figure.

1 The code for this experiment, as well as all data, analyses, and
modeling code, are available at: https://github.com/erik-brockbank/
estimation_drift.
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(10243 768 pixels) with the constraint that the dots did not overlap.
The range of stimuli did not control for changes in perceptual fea-
tures that correlate with number, such as stimulus density, display
luminance, or convex hull, since the impact of these nonnumerical
dimensions on underlying number representations is somewhat or-
thogonal to the question of how people generate number estimates on
the basis of their internal representations. Figure 1 shows an example
trial along with one representative subject’s data from all 300 trials.

Results

The response grid estimation model in Izard and Dehaene (2008)
makes four predictions about the overall character of people’s number
estimates: (a) estimates should follow a power law over increasing
numbers; (b) estimate calibration across participants should reveal
large individual differences due to idiosyncratic “stretching” of the
response grid; (c) individual estimate calibration should be fairly stable
over time (so long as participants do not receive feedback on their esti-
mates); and (d) estimates should have a static coefficient of variation.
Here we examine each of these predictions in turn.

Bilinear Estimate Function

Previous work on number estimation has proposed that people’s
estimates can be described by a power law, where a numerical esti-
mate y based on the presented number x can be approximated by
y = axb. Individual fits for a and b reflect a participant’s overall ac-
curacy: Their tendency to underestimate can be described by a sta-
ble b , 1 (see, e.g., Izard and Dehaene, 2008). This power law
produces a relationship that is linear in log space, that is, log(y) =
log(a) þ blog (x). Figure 2 shows individual estimate data for each
of the 24 experimental participants plotted on log coordinates. It is
clear that participant estimates do not appear perfectly linear in log-
log coordinates. We propose that the mapping function is not
described by a linear relationship between log magnitude and log
estimates, but bends such that small numbers are mapped more or
less veridically onto number words, while large numbers show a
systematic deviation from the identity line. Consider a bilinear
function that is accurate up to some critical number C, and then
deviates from the identity line with some log slope of S. This pro-
duces an estimate function of the following form:

log yð Þ ¼ logðxÞ; for x#C
S log xð Þ � log Cð Þ� �þ logðCÞ; for x > C

�
(1)

The bilinear estimate function defined above produces parame-
ter estimates that match the coarse patterns observed for individual
estimates in Figure 2. Cutoff values (fit in log space across partici-
pants) averaged 1.175 (SD = .34), or around 15 in linear coordi-
nates. Notably, this cutoff is well above the subitizing range
explored in prior literature and typically described as about five
(Kaufman et al., 1949; Mandler & Shebo, 1982), suggesting that
the bilinear model characterizes estimation patterns beyond simply
differentiating subitizing from power-law like estimates. Fitted lin-
ear slope estimates (above the threshold) averaged �.25 (SD =
.11), or around .56 in linear coordinates, reflecting the general pat-
tern of underestimation shown robustly in previous literature
(Izard & Dehaene, 2008; Kaufman et al., 1949; Krueger, 1982).

Critically, the bilinear estimate function can account for data of
individual subjects better than a simple line in log space with an
intercept a and a slope b. Figure 2 shows best-fitting linear and
bilinear curves for each participant on log-log coordinates. Aver-
aged across participant fits, the bilinear model has a substantially
lower Bayesian information criterion (BIC) than the fitted power
law function (bilinear: mean BIC = �402.03; power law: mean
BIC = �346.24). In addition, across individuals, the BIC for the
bilinear function was lower than the BIC for the power law func-
tion for 19 out of the 24 participants (in each case using k = 2 pa-
rameters and n = 300 estimates per person).

To ensure that the bilinear fit is not a result of factors specific to
this experiment, we ran a similar model comparison using the data
from Experiment 1 of Izard and Dehaene (2008). In that experi-
ment, five participants completed five sessions of 600 trials each
for a total of 3,000 estimates with stimuli in the range (1, 100).
Though this represents a lower range of number estimates than in
our experiment, the distribution of individual responses is similar
to the bilinear pattern exhibited in our data. Indeed, a model com-
parison with the estimate data reported in Izard and Dehaene
(2008) shows that the bilinear function has a lower BIC than the
power law function for all five of the participants (bilinear: mean
BIC = �5217.1; power law: mean BIC = �4694.9; individual dif-
ferences in BIC: subject ‘ML’ = 267.5; ‘PQ’ = 798.4; ‘AL’ =
83.7; ‘DC’ = 1102.5; ‘BF’ = 359.1).

Stable Individual Differences

Previous work that has assumed that estimate functions follow a
power law has measured individual variability in accuracy using the
fitted exponents of the power law mapping described previously
(Krueger, 1982). However, given the finding that individual calibra-
tion can be described by a log bilinear function, this predicts that
individual variability in estimate accuracy can instead be measured in
the bilinear slopes fit to each individual’s estimates at higher magni-
tudes. Large individual differences in bilinear estimate functions
implies that there is a great deal of variability between subjects in
their bilinear slopes and little variability within subjects over time.
We evaluate this by separately estimating slopes for each participant
from two distinct sets of trials, then calculating the pairwise correla-
tion in these slope estimates across the two sets. In other words, for
two sets of slopes A and B, where Ai is participant i’s slope estimate
from one set of trials and Bi is participant i’s slope estimate from the
other set of trials, we calculate the pairwise correlation of A1 and B1,
A2 and B2, and so forth. If subjects show a great deal of variability in
their individual slopes and little change over time (i.e., large individ-
ual differences), then this correlation will be high, since A and B will
each have high variance and high pairwise similarity. In contrast, if
subjects are inconsistent in their own calibrations (leading to low
pairwise similarity) or there is little variability between subjects (i.e.,
little variance in the slopes in A and B), this correlation will be low.

In this vein, we assess the individual variability in shape of the
bilinear mapping via a modular split-half analysis. We divide the
300 trials into odd trials (1, 3, 5, . . ., 299), and even trials (2, 4, 6,
. . ., 300) and determine the pairwise correlation between each par-
ticipant’s slope S (see Equation 1 above) estimated for each of the
two halves. For any given participant, the slopes for these two split
halves should be highly similar; whatever is true of their estimate
calibration across even trials should be equally true in odd trials.
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Therefore, the correlation between these halves depends mostly on
the variability in each set of slopes. If participants have a large
amount of individual variability in their estimates, then the split-
half correlation between participant slopes from the two sets of tri-
als should be high; on the other hand, a low split-half correlation
would reflect little stable variability between participants. Modular
split-half correlations for the bilinear slopes were very high (r =
.96; t(22) = 15.6, p , .001), revealing large, stable individual dif-
ferences in estimate calibrations. Thus, individual differences per-
sist under the bilinear model, not just the traditional power law
estimation model. While prior work has mostly argued for the
source of this individual variability in the acuity of people’s mag-
nitude representations (Gallistel & Gelman, 1992; Whalen et al.,
1999), we show in the subsequent section that this may also stem

from variability in people’s mapping from magnitude representa-
tions to verbal estimates over time.

Within-Subject Calibration “Drift”

The response grid model of estimation proposed by Izard and
Dehaene (2008) predicts that human estimate calibration should
be stable over time in the absence of feedback. They find that indi-
vidual estimates are calibrated by feedback (both accurate and
misleading) and that this calibration persists across many subse-
quent trials. To test the stability of the mapping function over
time, we revise our earlier modular split-half analysis in favor of a
blocked split-half analysis. In a blocked split-half analysis, we
divide each participant’s estimates into their first and second half
of the experiment rather than even and odd trials. As with our

Figure 2
Individual Subject Estimation Data (Red Points) Along With Best Fitting Linear (Blue) and Bilinear (Green) Mapping Functions in
Log Space

Note. Estimates are plotted in log coordinates, with best fitting linear functions in blue and bilinear in green. Some of our conclusions may be seen in the
raw data alone: (1) systematic mis-estimation occurs for larger, but not smaller, numbers, (2) participants show individual differences in their estimation biases,
and (3) estimate variability in log space increases with magnitude. See the online article for the color version of this figure.
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modular split-half analysis, the blocked split-half correlation of
subject estimate slopes was highly significant (r = .79; t(22) =
6.13, p , .001), indicating that people are very consistent in their
idiosyncratic magnitude to number mappings. However, the
blocked split-half correlation above is notably lower than the mod-
ular split-half correlation discussed previously—this difference is
highly significant using the Fisher r-to-z transform (z = �2.58, p =
.0098). The difference between modular and blocked split-half
correlations provides a coarse indication that the slope of the mag-
nitude-number mapping function is not stable within individuals
over the experimental session; if the bilinear slopes we estimate
for each participant’s mapping function were stable over time, the
best-fitting slopes in the first and second half of the experiment
should not depart meaningfully from each other. Their correlations
should be similar to those estimated over the full range of the
experiment on alternating trials.
To more precisely measure the change in estimate calibration

over time indicated by our split-half results, we generalize the
blocked split-half analysis to blocked split-nths for n = 30. For a
split-30th analysis, we divide our 300 trials into 30 subsets (rather
than the two used for split-half), each one comprising 10 trials.
For example, the fifth blocked split-30th subset will contain trials
41–50. This gives us a more fine-grained view of the change in
estimate slopes over time. As in our blocked split-half analysis,
we estimate the bilinear slopes for each of these trial subsets
and compare them across participants. Figure 3 (top) shows the
correlations between calibration slopes across each of the 30 trial
blocks. Trial blocks that are close to each other have a higher cor-
relation than blocks that are farther, that is, Block 1 is more like
Block 2 than Block 10. This suggests that the blocked split-half
results described above reveal a broader pattern of decreasing reli-
ability of estimate calibration over time: People’s estimates drift in
their calibration.
Though the overall pattern of drift can be seen in Figure 3 (top),

we wish to quantify how much people’s calibrations vary over the
experiment. The blocked split-30th correlation between, for exam-
ple, Block 1 and Block 2 (the bottom-most red square in Figure 3
(top)) measures the correlation of slopes estimated from two adja-
cent periods of time in the session that are on average separated by
10 trials. The same is true for the correlation between Blocks 2
and 3, 3 and 4, and so forth. In general, if we calculate the correla-
tion between subset i and subset i þ k from a blocked split-30th
analysis, those subsets are separated by a trial distance of 300*k/
30 trials. If slopes are drifting over the course of the experiment,
we would expect the correlation of slope estimates to decrease
with k—the separation between blocked subsets. This predicted
decrease in slope correlations over increasing trial distance sum-
marizes the pattern seen in Figure 3 (top) Trials in Blocks 1 and 2,
2 and 3, and 3 and 4 (k = 1, average trial distance = 10) have a
higher slope correlation than trials in Blocks 1 and 10, 2 and 12, 3
and 13, and so forth (k = 10, average trial distance = 100).
Figure 3 (bottom) shows the correlation in bilinear slope esti-

mates across trial distances between the blocks of trials shown in
Figure 3 (top). This correlation over trial distances is plotted in
red. As a point of comparison, we calculate this same correlation
after shuffling each participant’s trial index, shown in green in Fig-
ure 3 (bottom); this represents an expectation about the stability of
individual calibration slopes when we do not consider the time
course of the experiment. While the shuffled correlation of

estimate slopes remains stable, the blocked split-30th correlations
decrease steadily over greater trial distances. The fact that the
blocked split correlations remain fairly high even at a trial distance
of 300 (hovering around .6 in Figure 3 (bottom)) is likely a result
of stable individual variability in estimate calibrations in combina-
tion with people maintaining reasonably calibrated estimates
throughout the task. However, despite the overall stability of esti-
mate calibration across individuals, a linear regression on the cor-
relations in the blocked split-30ths as a function of trial distance is
significantly negative (95% confidence interval [CI] on the slope:
[�.0015, �.0013]; t(433) = �24.95, p , .001). Meanwhile, the
slope of the shuffled trial order correlations shown in green in Fig-
ure 3 (bottom) is not significantly different from zero. This pro-
vides a robust confirmation that participant estimate calibrations
drift over the course of the experiment. It is worth noting here that
we describe participants’ estimate calibration as a drift not in the
directional sense of, for example, drift-diffusion models (Ratcliff
& McKoon, 2008), but instead as a random walk constrained by
each participant’s overall calibration tendency and their most
recent estimates. These results are not predicted by the response
grid model of Izard and Dehaene (2008); rather than a stable map-
ping from magnitude to number, we find evidence of a dynamic
variability in people’s estimate calibrations over time.

Increasing Coefficient of Variation at Higher Magnitudes

Prior work in number estimation has proposed that people have
an idiosyncratic but stableWeber fraction that represents variabili-
ty in their internal number representations (Gallistel & Gelman,
1992; Whalen et al., 1999). However, the subsequent mapping
from these internal representations to verbal estimates is assumed
to be noise-free, leading to a constant coefficient of variation in
their estimates. In other words, the variability of their estimates
scales with the magnitude of the estimates as a result of Weber
noise in the underlying number representations (though see recent
findings in Testolin & McClelland, 2021). However, in the previ-
ous section we describe evidence that the bilinear slope of individ-
ual estimates may wobble across many trials, causing participants’
estimate calibrations to drift over time. This drift will naturally
introduce variability in estimates above and beyond that produced
by Weber noise, because it causes variability in the mapping from
number representations to estimates (rather than just variability in
the number representations themselves). Further, this drift in the
logarithmic slope of an individual’s bilinear mapping will affect
estimates at larger magnitudes more than smaller magnitudes,
because the wobbling slope of the bilinear mapping introduces
greater variability farther along the number line. As a conse-
quence, the calibration drift described previously predicts that the
coefficient of variation for participants’ estimates will increase
over increasing magnitudes. Some evidence of this can be seen in
individual estimate data in Figure 2. When viewing estimates in
log coordinates, a constant CoV amounts to a consistent variability
at all (log) magnitudes (i.e., variance that increases in proportion
to magnitude should be constant for multiplicative increases in
magnitude). However, it is clear in Figure 2 that subjects appear to
have increasing variance in their estimates at larger magnitudes,
even when viewed in log coordinates. This suggests that CoV may
be increasing for these participants, as predicted by the slow drift
in estimate calibrations.
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Figure 3
Individual Estimate Calibration Drifts Across Many Estimates

Note. (Top) Correlation in trial slopes across blocks of 10 trials for all participants.
Calibration “drift” is reflected in the high correlation in blocks close to each other (near the
diagonal) and lower correlation between more distant trial blocks (further from the diago-
nal). (Bottom) Correlation in trial slopes by trial distance for distances between trial blocks
shown above (red), compared to the same correlation when trials are shuffled (green). See
the online article for the color version of this figure.
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To test whether participants have an increasing coefficient of vari-
ation, we fit bilinear curves to their estimates as before; now, in addi-
tion, we fit a linear parameter to the variance of their log estimates to
determine how much this variance is increasing as a function of log
magnitude. Concretely, our previous bilinear estimate functions were
fit using a normal distribution around the true log magnitude to deter-
mine the likelihood of each participant’s log estimates. With a con-
stant CoV, the standard deviation of this log normal distribution
should be a fixed value that reflects the coefficient of variation. How-
ever, if CoV is increasing, then a linear function fit to the standard
deviation of the log normal as a function of (log) magnitude should
have a positive slope (if CoV is not increasing, this function will
have a slope of zero). We fit slope and intercept parameters to the
standard deviation of log estimate distributions for each participant.2

Figure 4 shows the distribution of fitted slopes, which represent the
increase in standard deviation as a function of log magnitude. The
distribution of slope parameters is significantly greater than zero (t
(23) = 5.54, p , .001; 95% CI for the slope mean is [.17, .38]); as
log magnitude increases, the best-fitting standard deviation for the
distribution of log estimates increases as well, suggesting that partici-
pants have an increasing CoV. This pattern is predicted by an esti-
mate process that involves ongoing updating of individual estimate
calibrations—that would have a larger impact on the variability of
larger estimates—but is not consistent with participants having a sta-
ble coefficient of variation (Izard & Dehaene, 2008).

Discussion

In this experiment, we sought to characterize the form and stability
of the mapping function between representations of number and for-
mal estimates. In particular, we tested the claim of Izard and Dehaene
(2008) that this mapping function should respect a power law that
varies across individuals, with a constant coefficient of variation that
reflects a stable mapping from noisy internal magnitude representa-
tions. We presented participants with a large range of magnitudes
and analyzed their estimates over the course of many trials. Results
from this experiment provide two novel ways of thinking about how
people map from perceptions of number to verbal number estimates.

First, the overall shape of people’s estimates is best described by a
bilinearmapping in logarithmic space from presented number to esti-
mate. In this formulation, most people are highly accurate at esti-
mates up to a threshold, after which their estimates depart from the
identity line, most often underestimating. Critically, this shift in
behavior for larger numbers does not simply reflect random respond-
ing, or a complete lack of systematicity. Instead, our results show
that although participants are not always accurate at high magni-
tudes, they are nevertheless uniquely calibrated. Even over a distance
of 300 trials, estimates exhibited far greater variability between par-
ticipants than within. This log bilinear fit differs from the power law
described in previous literature (Izard & Dehaene, 2008), but is nota-
bly consistent with results suggesting that people combine associa-
tive mappings at lower magnitudes with more flexible structure
mappings at higher magnitudes (Sullivan & Barner, 2013). The best
fitting cutoff values for each participant, which averaged 15 in linear
coordinates, may in part reflect the point at which they no longer rely
on associative mappings and generate less accurate estimates.

One alternative account of these results is that the fitted cutoff
values do not reflect a transition from associative to structural map-
ping, but subitizing instead (Kaufman et al., 1949; Mandler &
Shebo, 1982). On this view, the bilinear model simply reflects the
role of subitizing at lower numbers. However, the average cutoff
value of approximately 15 in our data is substantially higher than
the typical subitizing limit of around five. The accuracy of the bilin-
ear function below the cutoff is unlikely to merely reflect the
increased accuracy of subitizing.3 A second possible account of the
data is that the cutoff values, rather than representing something
like the transition from associative to structure mappings, are pri-
marily a function of exposure time to the stimuli. Prior work has
shown that estimation error can in part be explained by the amount
of time participants have to foveate a number array (Cheyette &
Piantadosi, 2019). However, the finding in these results is that par-
ticipants who are given longer exposure (up to 3 s) on some stimuli
show less underestimation and lower Weber fractions in their

Figure 4
Distribution of Slope Parameters for the Standard Deviation of
the (Log) Normal Distribution Used to Determine Each
Participant’s Estimate Likelihoods

Note. Slopes greater than zero represent an increase in variability of log
estimates as a function of log magnitude, i.e., an increasing coefficient of
variation. The red line indicates the expected average of 0 and the black
line indicates the mean of the fitted slopes, with 95% CI indicated by the
dashed black lines. See the online article for the color version of this
figure.

2 This new fit did not substantially change the bilinear parameters
previously fit to participant estimates, though the addition of the slope
parameter increased overall log likelihood of the fits.

3 A further distinction between the regime below our cutoff of around 15
and subitizing is that subitizing is typically considered to be a matter of
precision rather than calibration for low number estimates. Our data show
subitizing—or zero-variance estimation—below about six, but in the range
of six to 15, while there is variance in estimates (in contrast to subitizing),
there is no systematic miscalibration. We believe that the calibrated regime
below 15 is a different phenomenon than subitizing itself. Indeed,
Kaufman, et al. (1949) showed calibration up to about 15, but only
identified the subitizing range as below six, because that is the range to
which zero-variance, high-confidence estimates were restricted.
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responses. Such an effect ought to improve estimate calibration and
reduce variance across the full range of numbers, rather than being
restricted to some particular cutoff point, as we find.
The second contribution of the current results is to show that nu-

merical estimation—in particular, the slope of the bilinear fit for
larger magnitude estimates—is subject to a slow drift over many
trials (despite the relative stability noted previously). While the
mapping of magnitudes to numbers may be consistent across a
range of magnitudes at any point in time, these data suggest that it
changes over time. This change in calibration slope over many tri-
als, which is exaggerated at higher magnitudes, explains the vari-
ability in estimates above and beyond what would be expected by
Weber noise in internal number representations. This in turn
explains the observed increase of the coefficient of variation for
larger magnitudes, an effect not accounted for by existing models.
Why might previous results have failed to detect this increase in
coefficient of variation? Given that an individual’s slow drift in
estimate calibration is best detected across many trials and a large
range of estimates, previous studies may have lacked a sufficient
number of trials at large magnitudes to detect such effects (see,
e.g., Frank et al., 2008, 2012; Gallistel, 1990; Gordon, 2004).
More recent work by Testolin and McClelland (2021) has also
called into question the notion of a stable CoV. After reanalyzing
data from several well-known experiments on number perception
and estimation, the authors find evidence of a decreasing CoV for
estimates between 10 and 80 first reported in Revkin et al. (2008).
This pattern contrasts with our results showing an increasing CoV
for larger estimates, but this may also be due to the lower range of
numbers estimated in Revkin et al. (2008). Future research should
incorporate larger estimate ranges and total estimates to better
quantify this effect.
Broadly, our results suggest that people not only have uncertainty

in their subjective representations of number, but also a dynamic
uncertainty in their mapping from these representations to formal
number. One possible explanation of this dynamic uncertainty is that
when estimating, people seek to maintain consistency with previous
estimates, which could produce the sort of wandering calibration
slopes seen in our data. Such an account might in theory apply to a
range of settings where we regularly map from internal, subjective
representations to formal systems. Indeed, this finding integrates
number estimation with other domains of psychophysics where such
effects have been observed (Garner, 1953; Holland & Lockhead,
1968; Stewart et al., 2002). In the next section, we test this theory
with a model of the mapping process from magnitude to formal num-
ber in which numerical estimates are generated with a goal of main-
taining consistency with prior estimates. This approach builds on
previous models in psychophysics that aimed to provide accounts of
similar dependencies exhibited across multiple judgments (Laming,
1984; Stewart et al., 2005). We show that this model, with a limited
set of cognitively plausible assumptions about people’s numerical
reasoning process, achieves an accurate mapping and produces char-
acteristic patterns of bilinear estimation, individual variability, and
calibration drift.

Modeling Number Estimation

The experimental results described previously suggest that cen-
tral features of human number estimation are unaccounted for by
existing models, namely the log-bilinear shape of the estimate

function and the “slow drift” in estimate calibration. The latter
reflects dynamic variability in the mapping from internal magni-
tude representations to verbal estimates that produces an increas-
ing coefficient of variation at higher magnitudes. The response
grid model of Izard and Dehaene (2008), which proposes a direct
mapping between internal magnitude activation and verbal number
estimates, does not readily incorporate these findings. While revi-
sions to the response grid might allow for auto-correlated stretch-
ing and compression of the grid over successive trials to produce a
drift similar to what participants exhibit, there is no principled
way to produce the log-bilinear estimate function seen in our em-
pirical results; nothing about the response grid formulation sug-
gests that participants should be highly accurate up to a threshold
of around 15 and then show power-law like estimates for greater
magnitudes.

The response grid model also requires that people’s internal mag-
nitude representations offer a distance metric that can be mapped
onto numerical distance for estimation, that is, different magnitude
representations have a psychophysical “distance” that has a rough
correspondence to differences in number. While this is likely defen-
sible in the case of number estimation (Sullivan & Barner, 2014a),
we cannot assume that any scale for which we have an internal rep-
resentation will have the property of intuitive distance, nor that
such distances will map cleanly onto the formal system (Laming,
1984): Consider, for example, willingness-to-pay or how much you
enjoyed a restaurant mapped onto a five-star review scale. There-
fore, in the interest of generality, we seek a solution to number esti-
mation that might plausibly inform the broader problem of
navigating between psychophysical and formal scales.

To better account for our experimental data and to provide a
more generalized solution to the problem of mapping internal
states onto formal systems, we propose a model of number estima-
tion that does not rely on a stable internal scale that corresponds to
the external one. Instead, our model uses paired magnitude-num-
ber associations drawn from past experience to determine the most
likely estimate on a given trial. At a high level, the model gener-
ates an estimate for a given magnitude by sampling previous trials,
as well as more familiar magnitude-number mappings drawn from
prior experience. A series of ordinal comparisons between the trial
magnitude and the sampled magnitudes gives the model a set of
parallel ordinal constraints on the corresponding number value for
the current stimulus (i.e., if its magnitude is larger than the previ-
ous trial’s magnitude, then its number estimate should also be
larger). These ordinal comparisons, combined with a prior that
reflects more experience with low numbers than high numbers,
forms the basis for the model’s estimate function.

Critically, estimates generated in this fashion do not rely on a
stable or long-term internal scale, but instead are the result of
ongoing calibration using items sampled from memory. This
approach is broadly consistent with earlier work that has shown
that rich commonsense inferences can be made using only simple
operations performed over limited samples (Bonawitz et al., 2014;
Stewart et al., 2006; Vul et al., 2014). Further, the model’s esti-
mate process does not require a notion of psychophysical distance
that somehow maps onto numerical distance, since its estimates
are based on simple ordinal comparisons with previous experi-
ence; its accuracy then depends on the availability of relevant sam-
ples that allow it to calculate an estimate. The use of immediate
context to support estimates rather than an absolute internal scale
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connects this model to prior work in psychophysics (Laming,
1984; Stewart et al., 2002, 2005), reflecting its generalizability
beyond number estimation. In particular, it is similar to models of
categorization that rely on the difference between the current and
previous stimulus to make a decision (Stewart & Brown, 2004;
Stewart et al., 2002, 2005). However, the current model differs
from this prior work in a number of ways, including the combina-
tion of previous trials with familiar examples and the mapping
onto a large integer range rather than a small number of ordinal
categories.
Despite the considerable challenges in producing estimates with

such a simple process, we show that this model is able to achieve
a reasonably accurate mapping based on a limited set of data. Crit-
ically, we further show that the model’s structure allows for a sim-
ple characterization of bilinear estimate patterns, individual
variability, and calibration drift. Our model suggests that many
signature aspects of human number estimation may be explained
by such an ongoing estimate calibration process. More broadly,
we argue that human number estimation, as well as other settings
in which we must map from subjective internal scales to formal
external ones, are best described by this sort of simple reasoning
process over limited samples.

Model Description

Representing Magnitudes

Figure 5 provides an overview of the model’s estimation pro-
cess. First, presented with a number h (e.g., the sample stimulus
shown in Figure 1), the model generates an internal magnitude
representation m from a distribution p(m) ! N(log(h), r) for that
trial stimulus.4 The absolute value of this magnitude representation
is assumed to have no bearing on the numerical estimate that the
model will produce but allows us to formalize the ordinal compari-
son between magnitudes. While the exact nature of this representa-
tion is a subject of active research (Carey & Barner, 2019;
Cheyette & Piantadosi, 2020; Leibovich et al., 2017) we remain
agnostic about the details of how magnitudes are represented, and
our model is neutral with respect to differences between previous
accounts.
A natural question is how fine grained this magnitude represen-

tation is. If the representation were such that it could distinguish
any two numbers with 100% accuracy, the model would have a
much easier task than if magnitudes of 50 were indistinguishable
from 500. Prior work has suggested that the Weber fraction for
people’s number representations (the ability to distinguish
between two distinct numbers relative to their magnitudes)
remains constant as magnitude increases, though it can vary sub-
stantially across individuals (Whalen et al., 1999). This leads to a
stable coefficient of variation in magnitude representations (dis-
tinct from the coefficient of variation in estimates described previ-
ously). Consistent with Whalen et al. (1999), and other similar
findings (e.g., members of the Pirahã tribe have a fairly stable
coefficient of variation in their magnitude representations even
without words for larger numbers; Frank et al., 2008, 2012; Gor-
don, 2004), we set the magnitude representations in our model to
have a cognitively plausible, stable CoV of .24.5 This means that
our model uses a noisy magnitude representation consistent with
previous research on human number reasoning.

Calculating the Estimate

The model’s task is then to select a reasonable number estimate
y for this magnitude m (here, we use the range [1, 1000] to match
our experimental results). To calculate this, it relies on a set of
sampled magnitude and number tuples {li , ci} [ l, c. The vectors
of magnitude l and number c are comprised of previous trial esti-
mates as well as well-known mappings, and combine two different
sources of information that might support number estimation.
Though the sources of these mappings vary, the model has a uni-
fied process for generating an estimate given this information. The
model uses Bayesian inference to select an estimate y sampled
from the posterior distribution p(y j m, l, c). Following Bayes
rule, p(y j m, l, c) ! p(m j y, l, c) p(y). Below we outline the
process for calculating each of these terms.

The prior p(y) is described by a power law distribution p(y) !
y�a. We set a = 1; thus, favoring lower numbers overall. This
reflects the fact that people have a great deal of experience with
small numbers and relatively little experience with large numbers
and closely describes the need probability function (Anderson &
Schooler, 1991) for sets of increasing magnitude based on their
frequency of occurrence in the natural world (Cheyette & Pianta-
dosi, 2020; Dehaene & Mehler, 1992; Piantadosi, 2016). People
may be more likely to sample lower numbers as candidate esti-
mates, all else equal.

For the likelihood p(m j y, l, c), the model assembles a stepwise
likelihood distribution defined over candidate y values based on
the likelihoods of sample estimates. To illustrate, p(m j y, l, c) =
P n

j = 1 p(m jy, lj, cj) for each sample estimate with magnitude lj
and number value cj. The likelihood for each sample p(m j y, lj,
cj) has the form:

p m j y; lj; cj
� � ¼ pðm,ljÞ; for all y,cj

pðm$ljÞ; for all y$cj

�
(2)

Since magnitudes m and lj are drawn from Gaussian distribu-
tions centered at y and cj, respectively, we can derive the probabil-
ity of sampling a value less than 0 from a normal distribution

centered at m � lj as U
m� ljffiffiffiffiffiffi
2r2

p
� �

. While this might seem to violate

the earlier constraint that the model only knows the ordinal rank-
ing of magnitudes and not anything about their distance, suitably
small r in log space will make this probability p(m , lj) close to
1 or 0 for almost any two estimate magnitudes, rendering this
effectively a binary ordinal judgment. By taking the product of
sample likelihoods p(m j y, lj, cj) in this fashion, the model can
assemble a reasonable stepwise approximation to the overall likeli-
hood p(m j y, l, c); see Figure 5, Step 2. This stepwise distribution
is then scaled toward lower numbers by the prior p(y) to produce
the posterior p(y j m, l, c) defined above (Figure 5, Step 3).

4 The assumption throughout this paper that magnitude distributions
have variance that is constant in log space comes from prior work
suggesting that people’s internal magnitude representations are likely to be
on a log scale (Izard & Dehaene, 2008). Increasing or decreasing this
variance corresponds to more or less “noise” in people’s approximate
number sense (Piantadosi, 2016).

5 This corresponds to a standard deviation of the log10 Gaussian
magnitude representation equal to 0.1.
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Finally, to generate a number estimate y from the posterior p(y j
m, l, c), the model raises the posterior distribution to an exponent
d whereby sampling from the posterior approximates the maxi-
mum a posteriori (MAP) estimate (Sanborn & Beierholm, 2016).

Sampling Previous Estimates

The model calculates a likelihood over y above by sampling
from previous estimates and familiar magnitude-number mappings
to get sample magnitude and number tuples {lj, cj} [ l, c. The
model has free parameters for the number of samples n that it takes
in each trial and k for the probability that a given sample comes
from a well-known magnitude to number pairing (with probability
1 – k the model instead samples from the set of previous trial esti-
mates). A sample {lj, cj} can then be defined as follows:

lj; cjf g ¼ MemoryðaÞ; with probability k
TrialsðaÞ; with probability 1� k

�
(3)

In the function above, Memory (a) is a function that returns
magnitude, number tuples {lj, cj} from familiar mappings, and
Trials (a) is a function that returns magnitude, number tuples {lj,
cj} from previous trial estimates.
The familiar mappings between magnitude and number are

described by a power law distribution over numbers in the range [1,
1000]; this was chosen to match our experiment but is not central to
the model. In other words, Memory (a) returns a sampled number
estimate y and a corresponding magnitude m that is close to the true
value of the sampled estimate y: p(y) ! y�a and p(m) ! N(log(y),
r). These m and y values returned by Memory (a) form the sample
tuple {lj, cj}. The power law distribution used for these samples has
a slope a that strongly favors sampling lower numbers (a = 4).
Intuitively, the use of familiar mappings as a source of informa-

tion during estimation is consistent with the idea that people have

a pretty good sense of what 10 or 20 items looks like. The large
slope of the power law distribution from which familiar mappings
are sampled reflects the fact that people are far more likely to have
an associative mapping to smaller numbers (Sullivan & Barner,
2013), due perhaps to their greater frequency (Piantadosi, 2016),
the use of subitizing for especially low numbers (Carey & Barner,
2019; Feigenson et al., 2004), or simply their greater information
content (Cheyette & Piantadosi, 2020).

The previous trial estimates, like the well-known mappings, are
sampled from a power law distribution, in this case over the n pre-
vious trial indices. Trials(a) samples a “lag” value L where p(L) !
L�a, which dictates the previous estimate index from which to sam-
ple an estimate (L will be defined over the range [1, n]). The
sampled lag yields a tuple of an estimated number y = yt–L and its
corresponding magnitude m = mt�L for the current trial index t. We
use a = 1 for the previous trial estimates, which favors the immedi-
ately preceding estimates but retains some dependency on earlier
estimates; the model is most likely to sample the preceding trial,
then the one before that, and so forth. As with the familiar map-
pings, previous trial estimates are sampled without replacement
from the power law distribution over previous estimate indices.

The use of previous estimates to support calibration reflects the
idea that people might rely in part on previous estimates to make an
estimate in the current trial that feels “coherent,” that is, calibrated
similarly to previous estimates. The power law function from which
previous estimates are sampled is consistent with the fact that insofar
as people may be calibrating their current estimate in part based on
what they said previously, this would be most likely for the immedi-
ately preceding trials. Here, the model does not have any knowledge
of whether the magnitude corresponding to the sampled estimate
reflects an accurate mapping. Instead, it simply has access to the
magnitude representation m that corresponded to a particular esti-
mate y. Where this estimate happened to be accurate, the model will

Figure 5
An Overview of the Estimation Model

Note. (1) a new trial has an approximate magnitude mt. (2) an ordinal comparison between
and magnitudes from sampled estimates (shown here for trial t-1 and t-2) produces a likeli-
hood function over possible number estimates for mt. The product of these individual sample
likelihoods forms the general likelihood function. (3) combining the likelihood with a prior
favoring lower numbers, the estimate for trial t is drawn from a posterior distribution over
number estimates shown in green at far left. See the online article for the color version of this
figure.
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benefit from such a well-calibrated sample, but if it was inaccurate,
this may support the sort of miscalibrations described in Izard and
Dehaene (2008). The combination of samples from previous trials
and familiar number mappings accords with work in psychophysics
arguing that for highly familiar domains like color, people may ex-
hibit more “absolute” categorization, while in less familiar domains
people show a great deal of sensitivity to local context (Laming,
1984). Here, number estimation presents a sort of hybrid, with lower
number estimation more likely to rely on some amount of absolute
judgment (samples from memory), while estimation of higher num-
bers may rely more on local context (preceding trials).

Summary

The sampling process described previously yields a set of length
n where each element is a {magnitude, number} tuple {lj, cj} that
is either a noisy but accurate associative mapping from “familiar
magnitudes” or the magnitude and corresponding estimate from a
previous trial, with the relative proportions of familiar mappings
and previous trials in a set of samples determined by k. The model’s
sampled estimates allow it to compute a stepwise likelihood func-
tion over possible estimates y for the stimulus magnitude m as a
product of the likelihoods of each sampled estimate via the process
described above. This likelihood is then scaled by the prior and nor-
malized to generate a posterior distribution over number values that
the model samples to produce an estimate.
On this account, if the sample parameter n (dictating the number

of samples that will inform each estimate) is large, the model draws
on a richer set of previous experiences for its estimation; when the
probability of sampling from a known mapping k is also large, the
model has a more reliable set of guideposts mapping from magni-
tude to number that it uses to make a novel estimation. If k is small,
the model relies primarily on previous estimates it has made to cali-
brate its mapping from magnitudes to estimates. Given this, the pro-
posed model will be trivially successful for a suitably large n and k
and will be hopelessly inaccurate with sufficiently low n and k.
Thus, we begin by asking whether the model can achieve human-
like performance with a cognitively plausible number of samples.

Model Results

Using the procedure described above to generate estimates for
each trial, we tested our model with the 300 trials from each of the
24 participants in our experiment. We begin by identifying values
of n and k that allow for reasonably accurate estimates. Next, we
evaluate how well the model produces the characteristic features
of human estimation described in our experimental results.
Throughout the remainder of this section, comparison of the model
to human performance is done using the participant data from the
previous experiment. We use the average of participants’ two esti-
mates in each trial, which provides a less noisy set of responses
and a more conservative bar for model accuracy. In what follows,
we evaluate our model with four central claims:

Claim 1: The model produces an accurate mapping from
magnitude to number even with relatively few samples.

Claim 2: The model produces human-like bilinear estima-
tion patterns and underestimation.

Claim 3: The model produces variability that is similar to
human individual differences in estimate calibration.

Claim 4: The model produces human-like drift in estimate
calibration.

Accurate Estimates With Few Samples (Claim 1)

Although the model is greatly hindered by making only ordinal
magnitude comparisons on each trial, it achieves reasonable per-
formance with a limited number of samples. We hold the probabil-
ity that a sample comes from a familiar mapping constant at k =
1.0 to see how the model performs under idealized conditions and
evaluate model performance for varying numbers of samples n.
Figure 6 (top) shows model performance alongside the same esti-
mates for three sample participants. With n = 20 samples drawn
from familiar number mappings, the model produces a reasonably
accurate function from internal magnitude to number. Model esti-
mates cluster around the identity line at lower numbers and do not
deviate substantially more than people do at higher magnitudes.

To quantitatively compare human and model estimates, we plot
model estimate mean squared error (MSE) for increasing values of
n samples alongside human MSE from the estimates in our experi-
ment data. Figure 6 (bottom) showsMSE of human estimates com-
pared with model estimates for increasing numbers of samples.
The model reliably surpasses overall human accuracy at 15–20
samples. This finding is robust to alternative values of k: With k =
.5, the model drops below human MSE at a similar n to k = 1.0.
Thus, reasonable estimate performance by the model does not
hinge on idealized learning conditions. This result is compatible
with prior research showing that adults may have on the order of
15 strong associative mappings, that is, numbers for which they
have direct and accurate mappings from magnitude to number
(Sullivan & Barner, 2013). We find support for Claim 1, that under
reasonable parameter values, the model is able to attain an overall
accuracy that is comparable with humans and resembles in broad
strokes the character of human estimation.

Bilinear Estimation With Human-Like Underestimation
(Claim 2)

Underestimation at larger magnitudes is perhaps the most sa-
lient and well-documented feature of human number estimates. In
our experimental data, this was characterized as a log-bilinear esti-
mation function and was shown to have a better fit than a simple
power law mapping. One possible account of the underestimation
pattern is that if people are more likely to encounter lower num-
bers in everyday experience, they will likely be more calibrated in
estimating lower numbers; therefore, when encountering a higher
number than they are used to seeing, participants might fall toward
more familiar (but still plausible) numbers in their estimates, pro-
ducing a general pattern of underestimation. Such a tendency
might even be considered rational, given the power law governing
“need probability” of increasing integers (Cheyette & Piantadosi,
2020; Piantadosi, 2016). Consistent with this, the model’s prior on
lower numbers and the power law sampling of familiar mappings
at lower values together produce a bias toward lower estimate
values.

To compare model bilinear estimation fits to the full set of
participant data, we plot model cutoff and bilinear slope
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parameters alongside the fitted parameters for our 24 experi-
mental subjects (model settings remain at n = 20 samples, k =
.5 probability of estimates from familiar mappings). Figure 7
(top) shows the aggregate set of human estimates with a single
cutoff and slope parameter alongside cutoff and slope values for
a matched set of model estimates. These fits are nearly indistin-
guishable, reflecting the overall trend of the model to underesti-
mate similarly to humans. Figure 7 (middle) shows the
distributions of cutoff and slope parameter values fit to individ-
ual subjects, with the average model cutoff and slope values

when simulating individual participants shown in red. The aver-
age model fit is well within the range of human estimates, partic-
ularly for the fitted slope. Finally, Figure 7 (bottom) presents the
same data in finer detail: Human cutoff and slope estimates are
plotted together with average model cutoff and slope values.
This comparison shows that the model occupies a position com-
parable to human estimates in fitted “cutoff-slope” space.
Broadly, Figure 7 reflects Claim 2 outlined above: The model is
able to capture the human patterns of bilinear fit and underesti-
mation at higher magnitudes.

Figure 6
Model Estimates Match Individual Response Patterns and Achieve Human Level Accuracy

Note. (Top) Model performance plotted alongside participant estimates for three sample participants. Using only n = 20 sam-
ples and a probability k = 1.0 that each sample is drawn from a familiar number mapping, the model achieves reasonable per-
formance qualitatively. (Bottom) Mean Squared Error (MSE) of model estimates plotted alongside human estimates for
comparison. With a probability k = 1.0 that a given sample comes from a reliable benchmark, the model is equivalent to human
performance after only around 15 samples. See the online article for the color version of this figure.
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Figure 7
Three Views of How Our Model Captures the Bilinear Shape of
Human Estimates

Note. (Top) Model bilinear estimation alongside human results for all experi-
ment runs reflect aggregate similarity. (Middle) Distribution of bilinear parame-
ter fits across participants. Average model bilinear parameter values are shown
in red. (Bottom) Bilinear slope and cutoff values across participants with fitted
cutoff on x and slope on y. Average model bilinear parameter values are shown
in blue with error in either direction. See the online article for the color version
of this figure.
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Human-Like Individual Differences (Claim 3)

In our experimental data, we found large individual differences
in estimate calibration at higher magnitudes, which we described
as varying bilinear slopes fit to the estimates. In line with this, we
consider here how a model of the mapping from subjective magni-
tudes to verbal estimates might capture variability across partici-
pants. The model as we have described it so far has free
parameters for the number of samples n that participants use to
assemble an estimate and the probability k that each sample comes
from familiar number mappings or previous estimate trials. These
mappings are sampled anew at every trial, though the distribution
over familiar mappings and previous trials heavily constrains this
resampling. We modify this baseline model in favor of an individ-
ual differences model that uses a fixed and limited set of familiar
mappings across all trials. We vary this fixed set across the mod-
el’s participant simulations to capture individual variability in the
range of numbers for which participants have a strong recogniz-
able mapping. To generate each subject’s estimates, the model
samples exclusively from this subject’s fixed set of mappings
rather than sampling each time over the full range of possible
mappings.6

Formally, recall that an individual’s associative mappings are
expressed as vectors l, c, where individual magnitude to number
mappings sampled for a given estimate are expressed as {magni-
tude, number} tuples {lj, cj} [ l, c. For each set of 300 subject
estimates generated by the model, we now populate the vectors l,
c, once with I unique magnitude to number mappings (these are
sampled with the same Memory(a) function that generated famil-
iar mappings for each trial in the baseline model, using the same
a). This set is then fixed for all the subject’s trials; each individual
estimate draws samples {lj, cj} from this constrained set of mem-
ories. To illustrate, if I = 10, a given subject’s set of mappings is
most likely to include numbers in the range 1–10 and highly
unlikely to contain, for example, 230. However, the set of larger
numbers that do get sampled for each subject will likely vary
across subjects. For each estimate trial, samples from among the
set of mappings I are drawn from the same power law distribution
that initially generated I, with the probabilities initially assigned to
each number y normalized across the set of mappings in I. The
baseline model can be seen as a special case of this general model
in which I is equal to 1,000, or the full range of numbers that our
model considers when producing estimates.7

Within this framework, the free parameter I gives us a knob with
which to tune individual variability.8 High values of I will be closer
to the baseline model conditions, where participants have very simi-
lar distributions from which they sample associative mappings for
each estimate. However, low values of I will create more idiosyn-
cratic distributions of associative mappings across subjects, chang-
ing the mappings that each subject is likely to draw on for a given
estimate. We define a low variability model with I = 1,000 associa-
tive mappings (i.e., one for every possible number estimate) and a
high variability model with I = 10 mappings (we set n = 20 and k =
.5 as above to maintain continuity). We are interested first in
whether the low value of I in the high variability model has the
desired effect of increasing the variability of bilinear slopes esti-
mated across individual “subject” simulations by the model. Sec-
ond, we want to know whether this high variability model produces

individual differences in actual estimates comparable to what is
seen in participant data from our experiment.

We find that the high variability model produces large variabili-
ty in fitted slopes and that the corresponding estimates are similar
to human individual differences. In Figure 8 (top), we plot the dis-
tribution of slopes for the high and low variability models, with
the average human slope indicated by a dashed line. The high vari-
ability model has a notably larger distribution of fitted slopes than
the low variability model, though both models have large mass
around the slopes best fit to participants. How then does the vari-
ability of estimates for the high variability model compare with
human participants? In Figure 8 (bottom), we plot the (modular)
split-half correlation of fitted slopes for human estimates from our
experiment alongside the high and low variability model, as well
as the baseline model fits. Recall that in our experimental data, we
used this same measure to assess the degree of individual variabili-
ty in participant estimates. The low variability and baseline models
are comparable in their split-half correlations, as expected, while
the high variability model attains a split-half correlation similar to
humans. This suggests that by giving the model a sampled set of
familiar associative mappings that is stable across estimates but
varies between participant simulations (maintaining all other pa-
rameters as before), we are able to produce a variability of esti-
mate calibrations that is close to the individual differences
between human subjects in our experiment. In line with Claim 3,
our model offers a simple account by which we might explain the
large individual variability in human estimates.

Human Drift Across Many Trials (Claim 4)

In our experimental data, we show that estimate calibration
exhibits a slow drift as bilinear calibration slopes wobble over the
course of many trials. We hypothesized that this drift is a result of
continual updating of the mapping from magnitude to formal num-
ber as more data are encountered. Our model formalizes this pre-
diction through its ongoing dependence on previous estimates.
Here we show that, as with bilinear underestimation and individual
variability, the model’s estimate calibration drifts similarly to
humans, providing evidence that human drift is explained by an
effort to maintain consistency with one’s previous estimates.

To estimate a number for a perceived magnitude, our model
relies on a combination of familiar magnitude to number mappings
and previous trial estimates. While the familiar mappings are fairly
stable (particularly in the individual variability model considered
above), the mappings from previous estimates are inherently
dynamic. The model’s k parameter determines the proportion of
samples on a given trial that come from these more stable map-
pings. When this number is low, the model’s estimates will be more

6 Though the associative mapping concept is useful within the domain
of number estimation, these stable mappings might simply be thought of as
“memories” or reliable associations in other problems that involve mapping
from subjective internal representations to formal systems.

7 In fact there is a slight difference between the baseline model and the
individual variability model with I = 1,000 because the baseline model will
re-sample the magnitude value associated with a given number for each
estimate, whereas the individual variability model keeps everything about
these mappings fixed from the outset.

8 There are a number of ways we might have implemented individual
differences in this model; the current approach simply suggests that people
have different prior experiences and different stable associations.
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dynamic and its auto-correlation higher as a result of relying more
heavily on previous estimates. We expect that so long as the mod-
el’s k value allows for sufficient dependence on previous estimates,
it should drift as human calibration does.
Our measure of model estimate drift was calculated using the

same process as in our experimental results. Model estimates were
divided into bins of 10 consecutive trials, creating 30 such bins for
each model participant over the 300 total trials. We then calculate a
best-fitting log bilinear cutoff and slope parameter for the estimates
in each bin using maximum likelihood estimation. The pairwise cor-
relations between each participant’s slopes in different trial blocks

are aggregated by the average “trial distance” between blocks and the
drift in estimate calibration described in our experiment results is
revealed by the decrease in this slope correlation at greater and
greater trial distances.

A notable feature of our empirical results was that despite the slow
drift in estimate calibration, pairwise slope correlations were very
high at low trial distances (.8–.9) and remained high even at trial dis-
tances approaching 300 (..5). We hypothesized that this was due to
the high individual variability in slope estimates, as well as people
remaining fairly well-calibrated across more distant trials. We are
interested in the degree to which our model can capture these

Figure 8
Comparison of Individual Variability Models to Subject Data

Note. (Top) Fitted bilinear slope values across “participant” estimations
for the high and low individual variability models. Average human slopes
indicated by the dashed line. The high variability model, which is meant to
capture human estimate patterns, samples from 10 familiar mappings.
(Bottom) A split-half correlation indicates that the high variability model
has individual variability in estimate slopes closer to human levels, com-
pared with the low variability and baseline models (error bars represent 95%
confidence interval [CI] for subject data, standard error [SE] of 10 model
runs). See the online article for the color version of this figure.
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additional empirical features of the human estimate data as well. To
explore this, we calculate the estimate drift for both the baseline
model and the high variability model described previously. The
degree to which the baseline model estimates drift provides an indi-
cation of how much the reliance on previous estimates by itself pro-
duces a slow drift in estimate calibration; then, the inclusion of the
individual variability model provides an indication of how much
individual variability of the sort we explored in the previous section
contributes to the high overall slope correlations at both short and
long trial distances. For continuity with previous results, both models
use n = 20 samples for each estimate and a probability k = .5 that
each sample in a given estimate draws on familiar mappings. As
above, the individual variability model, which was able to simulate
human individual differences by reducing the number of unique

familiar mappings for each subject, samples from I = 10 stable mem-
ories for each participant run of the model.

Figure 9 shows the drift in slope correlation over trial distance for
participant and model data. The human data reflects the pattern first
illustrated in our experimental results: At low trial distances, human
estimates have a high correlation of fitted slopes, reflecting the stabil-
ity of individual estimate calibration at close blocks of trials as well
as the individual variability of fitted slopes across subjects. However,
as trial distance increases, the correlation of fitted slopes decreases,
reflecting the fact that human estimate calibration seems to be subject
to an ongoing updating process throughout the task that makes more
distant trial blocks less similarly calibrated. The baseline model data
in Figure 9 shows a qualitatively similar pattern, with the correlation
between fitted slopes in more adjacent blocks of trials decreasing

Figure 9
Comparison of Estimate Calibration “Drift” for Human Subjects and Model
Versions

Note. Both model versions have the same qualitative pattern as human subjects (i.e.,
smoothly decreasing autocorrelation over greater trial distances). The high individual vari-
ability model is closer to human patterns of drift, though neither model's autocorrelation
decreases as steeply as the empirical data. Ribbons reflect standard error of the mean (SEM)
of human subject data and standard deviation (SD) of multiple model runs, respectively.
See the online article for the color version of this figure.
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gradually as trial distance increases (i.e., correlation is higher for
more adjacent compared with less adjacent blocks of trials). This
illustrates that the model, even in its most basic architecture, pro-
duces a drift in estimate calibration over time. At the outset, the
model has a much lower correlation of slope estimates than humans
due to lower “individual differences” for the model across simulated
participants compared with human estimates. Nothing about the base-
line model changes between participant estimate simulations, reduc-
ing the individual variability that can contribute to a correlation
coefficient compared with 24 different human participants.
In Figure 9, the individual variability model has a gradual decrease

in correlation of fitted slopes at greater trial distances (i.e., a drift in
calibration). However, the individual variability model also has a
much higher auto-correlation of slopes at the outset and maintains a
higher correlation over increasing distances. This is consistent with
the idea that the drift in human estimate calibration is a function of
both ongoing updating of the estimate function over time, in combi-
nation with large individual differences in overall calibration. The
individual variability model provides a reasonable approximation of
this, though it does not reach a slope correlation as high as human
estimates.
Given the success of the high variability model in capturing

individual differences in estimate calibration in the previous sec-
tion, we might have expected it to exhibit slope correlations more
similar to humans in the current analysis. However, while the pre-
vious section examined only split-half slope correlations, the cur-
rent analysis is based on split-30th correlations and is a more
sensitive measure of individual differences. Second, the high vari-
ability model simulates individual differences by allowing for an
idiosyncratic set of familiar mappings that each participant uses.
In the previous section, we showed that this simple modification
can produce variability in overall estimate calibration that is simi-
lar to humans. However, it is unlikely that this is the only source
of individual variability in human estimate calibration. Other sour-
ces of stable individual variability not captured by our model
might further increase the correlation of human estimate slopes.
Therefore, it is perhaps not surprising that the subtle measure of
estimate calibration over time shown in Figure 9 does not have a
slope correlation as large as human estimates for a given trial dis-
tance, even with our high variability model.
Our model provides a plausible account of how calibration drift

might arise in humans. Our model seeks to maintain a dynamic
“coherence” in its estimates by continually updating the mapping
from magnitude to number estimates based on the magnitudes of
previous trials and the corresponding estimates produced. This
process, in combination with variability across model runs, pro-
duces drift in estimate calibration that is similar to the pattern seen
in humans. If people are also updating their mapping from magni-
tude to number based on new data they receive and trying to main-
tain some ongoing coherence with their most recent estimates,
then our model offers a proof of concept that this process could
explain the drift seen in human estimation.

General Discussion

We investigated the process by which people translate between
perceptions of magnitude and formal representations of number
when making numerical estimates. In particular, we asked what sort
of mapping best explains people’s ability to calibrate their estimates

and how that mapping might work. Our experimental results pro-
duce two novel findings. First, we show that participants’ individual
estimate functions are best modeled as a bilinear function in log
space rather than as a simple log-linear function, contrary to previ-
ous proposals (Kaufman et al., 1949; Krueger, 1982). Under this
formulation, people are highly accurate up to a unique threshold, af-
ter which their estimates exhibit a sublinear relationship with nu-
merical magnitude. Second, we show that the slope of this bilinear
function varies not only across individuals (as shown in previous
findings) but within individuals over many trials, suggesting that
people’s estimate function is subject to an ongoing updating process
that may incorporate information from previous estimates.

Recent research addressing how people learn to map magnitude
representations to symbolic number estimates has made a distinction
between associative mappings, in which magnitude representations
correspond to unique number values, and structure mappings, in
which number values are assembled through more relative notions of
distance and ordering of magnitude representations (Sullivan &
Barner, 2013). Indeed, evidence suggests that people use a combina-
tion of both associative and structure mappings, with associative
mappings mostly detected for smaller integers and developmental
changes in estimation accuracy corresponding to improved structure
mapping (Sullivan & Barner, 2013, 2014a, 2014b). Our experimental
results bear on this existing work in two ways. First, the finding that
people’s estimates are best described with a log-bilinear function has
an obvious isomorphism to the use of associative and structure map-
pings in estimation. Future work should explore the relationship
between associative mappings and the cutoff found in our bilinear
model, and further between structure mapping of higher magnitudes
and the idiosyncratic bilinear slopes fit to individual estimates. Sec-
ond, the finding that people show a dynamic uncertainty in the map-
ping from magnitude representations to number estimates, which
causes a drift in their estimate calibrations, offers a refinement of our
understanding of structure mappings. The proposed explanation for
this drift, that people are continually updating their mapping function
to be consistent with prior estimates, is consistent with the structure
mapping account, but suggests that such structure mapping is not a
static process but is instead a dynamic one.

Our empirical results are not easily accommodated by existing
models of the mapping from internal representations to formal esti-
mates. We offer a computational model of the process by which
people might accomplish this mapping from internal magnitude
representations to symbolic number. In the tradition of “decision by
sampling” models of Stewart et al. (2006) and earlier psychophysi-
cal models of absolute judgment for novel stimuli (Laming, 1984;
Stewart et al., 2005), our model assumes only that people have the
ability to sample the magnitudes and corresponding number values
from a limited set of prior estimates and “familiar mappings.” De-
spite these constraints, our model is able to generate estimates with
human-like levels of calibration using only ordinal comparisons
between an observed magnitude and the sampled estimates.

We evaluate the model by its ability to reproduce the character-
istic patterns of human mappings from internal magnitude to num-
ber described in our experimental results. First, we show that the
model achieves human-level performance with a limited number of
samples (15–20), which by itself was not a given since the model has
a highly limited set of operations and knowledge to compute an esti-
mate. Next, we show that model estimates, under reasonable condi-
tions of the free parameters, are characterized by a log-log bilinear fit
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that strongly resembles the bilinear character of human estimates dis-
covered in our experiment. We then show that a simple extension of
the model produces individual variability that is comparable with the
individual differences present in human estimates. Finally, we show
that the calibration of the model’s estimates is subject to a drift over
the course of many trials that is similar to the pattern of human esti-
mate calibration. With this latter result, we offer a candidate explana-
tion for the source of human calibration drift, namely a reliance on
sampled prior estimates to coordinate the current estimate, which
produces a high correlation in estimate calibration between nearby
estimates that decreases over large trial distances.
While the model offers several novel results, there are a number

of ways in which future work might further validate it. First, the
results presented here are based on human estimates for numbers
drawn from a geometric distribution that extends the range of num-
bers used in prior work but that nonetheless favors smaller num-
bers. Because the model relies on previous estimates to inform its
current decision, the model’s behavior may be dependent to some
extent on the underlying stimulus distribution, along with the expo-
nential distribution from which familiar mappings are sampled. In
the current work, these distributions were chosen to reflect the prob-
ability of encountering and needing particular number representa-
tions (Piantadosi, 2016). However, prior work in psychophysics has
shown that people’s mapping functions may indeed be malleable
given different distributions of stimuli (Haubensak, 1992). In this
vein, future work might explore the sensitivity of the model to
much larger magnitudes or to stimulus distributions that differ from
the one used in the current experiment.
Additionally, as noted above, support for the model comes primar-

ily from its ability to capture a wide range of empirical phenomena
in number estimation—including the novel drift in calibration
observed over many trials—along with its generalizability to broader
psychophysical domains. There are a number of robust behaviors
exhibited in prior psychophysical work that the model might account
for (for a review, see Stewart et al., 2005). In particular, sequential
effects of assimilation and contrast, whereby people’s responses are
pulled closer to the preceding trial magnitude and away from more
distant trials, have been exhibited across a range of psychophysical
judgments (Garner, 1953; Holland & Lockhead, 1968; Ward &
Lockhead, 1970). These effects are difficult to account for in models
that rely on stable internal scales, but can emerge somewhat naturally
from models in which responses are calibrated based on previous tri-
als (Stewart et al., 2002, 2005). Whether this and other classic psy-
chophysical effects can be produced by our model is difficult to say
because of its reliance on both previous estimates and familiar map-
pings, but the model’s tendency to sample immediately preceding tri-
als for comparison (similar to the weighting of differences in Stewart
et al., 2005) might in principle yield assimilation and other effects.
Recent work has explored the distinct role of stimulus and response
in assimilation of facial expression perception (Hsu & Wu, 2020);
given the parameterization of stimuli (familiar mappings) and prior
responses (earlier trials) in our model, similar investigations offer a
potential avenue of future work.
Finally, though the model captures a range of behavioral phenom-

ena in estimation, its parameters were not fit to our empirical data,
limiting the ability to do precise model comparison. The decision not
to fit model parameters was both practically and theoretically moti-
vated. In contrast to existing computational models that describe esti-
mation at the level of aggregate behavior (Izard & Dehaene, 2008),

our model offers a process account of individual trial-level responses
based on samples from memory of familiar mapping and previous tri-
als. Fitting the model to individual trial/subject data would require
estimating the specific bundle of historic, and transient, exemplars
available to an individual subject on a given trial, which is not cur-
rently possible. Instead, we show that this process produces effects
that are broadly consistent with observed behavior in estimation (sim-
ilar to related sample-based models, e.g., Stewart et al., 2006). At a
theoretical level, we are not aware of other similar process accounts
for comparison, limiting the value of precise model parameter esti-
mation even if it were possible.

The current results have significant implications for the study of
numerical reasoning, as well as for broader questions about the nature
of how people reason about systems and scales in the world using
internally calibrated representations. First, we show that people dis-
play measurable uncertainty not just in their magnitude representa-
tions but in the way they express these representations as number
estimates over time; our experimental results quantify the variability
in people’s mapping from representation to number. Further, we pro-
vide novel evidence that this mapping is best described by a function
that is bilinear in log space, rather than a simple power law. It is
tempting to conclude based on these results that estimation is gov-
erned by two distinct processes, one which allows for accurate esti-
mates up to a threshold and then a second that produces error-prone
estimates above the threshold. However, our modeling results indi-
cate that this need not be the case. We show that a unified process of
selecting estimates via ordinal comparison to a set of sampled magni-
tude-number pairs is able to account for robust features of human
estimation, including the bilinear estimate function and slow drift
described in our experimental results. Critically, while previous
attempts to model the process by which people estimate number
have emphasized a (somewhat) stable internal mapping from magni-
tude to verbal number (Izard & Dehaene, 2008), our modeling results
suggest that this may not be necessary. Instead, we show that the
ability to calibrate the present magnitude via ordinal comparison to
samples drawn from memory is sufficient to generate accurate and
distinctly “human” estimate patterns. This opens the door to future
work aimed at understanding the degree to which children’s estima-
tion patterns, or other forms of numerical reasoning altogether, might
be described by this model.

In addition to offering a unified account of the process by which
people generate estimates from subjective representations of mag-
nitude, our model raises a number of questions about the develop-
ment of this mapping and the individual differences seen in
estimate calibration. Our modeling results suggest that overall esti-
mate accuracy, and individual differences in calibration, can be
approximated through differences in the number and range of “fa-
miliar” magnitude to number mappings that people have, particu-
larly for larger numbers. This suggests the intriguing possibility
that estimation ability among children and the putative relationship
between estimation and more general numerical reasoning (Hal-
berda & Feigenson, 2008) might be improved, or individual differ-
ences among adults lessened, through mere learning of a broader
range of associative mappings of the sort our model relies on.

More broadly, the current results tie number estimation into the
general challenges people face when mapping between subjective, in-
ternal scales and the systems we use to communicate about them.
The task of navigating between internal representations of our every-
day experience and formal systems is a part of intuitive reasoning
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across a range of domains. We regularly make estimates based on
fairly concrete representations, for example, whether we will be able
to carry a heavy suitcase to the car or how long it will take to go gro-
cery shopping, as well as more abstract estimates, such as whether
the price of concert tickets exceeds how much we expect to value the
experience. By recruiting domain-general processes such as sampling
relevant memories and basic comparison between the current stimu-
lus and those memories, the model outlined here attempts to solve
this more general problem with an approach that is not restricted to
number estimation. In doing so, we offer a bridge between work in
psychophysics that has emphasized the extent to which mapping
from internal representations to external systems can be done without
a robust internal scale (Laming, 1984; Stewart et al., 2002, 2005) and
prior work in number estimation, which has largely assumed a stable
scale with an intuitive notion of psychological distance as the basis
for numerical reasoning (Izard & Dehaene, 2008). Laming (1984)
observed that a model that assumes a limited internal scale could suc-
cessfully capture a range of behavioral phenomena when categoriz-
ing stimuli like auditory tones or line lengths, but might be unable to
account for behavior in domains like color (and presumably number),
where people have a great deal of prior experience. By incorporating
both previous trials and more familiar mappings into our model’s
estimate process, we offer an account of how prior knowledge and
consistency with earlier responses might come together in a domain
like number to produce calibrated responses that nonetheless drift
over time. In this way, we hope our model provides a more general-
ized view of people’s ability to navigate the range of external scales
we use every day based on differing amounts of prior knowledge and
experience.
Finally, a number of previous results have suggested that complex

human judgments of various kinds can be performed via simple cog-
nitive operations over sampled data from memory or the world
around us (Bonawitz et al., 2014; Stewart et al., 2006; Vul et al.,
2014). By showing that number estimation—and the more general
problem of mapping psychophysical representations to analog formal
scales—can be solved using a similar approach, we provide further
evidence that the ability to sample and compare (i.e., “decision by
sampling”; Stewart et al., 2006) constitutes a core component of our
algorithmic toolbox and a critical feature of domain-general human
intelligence.
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